Сандвик расчет режимов резания онлайн

Мобильные приложения

Приложение CoroKey для iPad от ​Sandvik Coromant

Приложение CoroKey основано на том же принципе, что и справочник-каталог CoroKey: “просто выбрать, легко работать”. Приложение поможет вам подобрать режущую пластину в соответствии с исходными данными. Укажите обрабатываемый материал и тип операции и следуйте рекомендациям по выбору наилучшего сочетания геометрии и сплава пластин в зависимости от группы обрабатываемого материала.

small;»>Приложение Start Values от ​Sandvik Coromant (Начальные значения)

Приложение Start Values показывает рекомендуемые режимы резания (скорость, подачу и глубину резания) для разных областей применения режущих пластин.

Калькулятор для расчета режимов резания от Sandvik Coromant

Калькулятор режимов резания разработан специально для того, чтобы помочь инженерам и наладчикам подобрать оптимальные параметры обработки при точении, фрезеровании и сверлении, основываясь на существующих условиях резания.

Приложение для подбора режущих пластин Sandvik Coromant

Приложение Insert ID для iPhone, Android и Blackberry поможет узнать, какая пластина Sandvik Coromant соответствует той, которую используете Вы. Это ваш путеводитель при выборе геометрии и марки сплава пластин Sandvik Coromant.

Калькулятор экономики производства для iPad от Sandvik Coromant (Manufacturing Economics
Calculator App)

Приложение Metalworking World для iPad от Sandvik Coromant

Приложение Sandvik Coromant для токарной обработки нескольких материалов

Sandvik Coromant предлагает ряд токарных пластин, обеспечивающих длительный срок службы инструмента при самых разнообразных условиях обработки. Вы можете использовать одну и ту же пластину, переходя от точения одной детали к другой и при изменении материала заготовок.

Это приложение поможет вам опробовать ваши собственные комбинации материалов и условия обработки и получить подходящую для ваших задач выборку из токарных пластин. Для начала выберите нужную операцию на круговой диаграмме. Затем выберите материалы (меняйте распределение, перемещая бегунки разных цветов), размер детали (меняйте размер легким прикосновением к экрану) и области применения.

В результате вы получите рекомендованную для ваших операций режущую пластину. Вы можете пополнить ваш список предпочтений и поделиться выбранными продуктами посредством электронной почты.

Сандвик расчет режимов резания онлайн

Основными параметрами задающими режимы резания являются:

-Частота вращения вала шпинделя (n)
-Скорость подачи (S)
-Глубина фрезерования за один проход

Требуемая частота вращения зависит от:

-Типа и характеристик используемого шпинделя
-Режущего инструмента
-Обрабатываемого материала

Частота вращения шпинделя вычисляется по следующей формуле:

D – Диаметр режущей части рабочего инструмента, мм
π – число Пи, 3.14
V – скорость резания (м/мин) — путь пройденный точкой (краем) режущей кромки фрезы в минуту.

Скорость резания (V) берется из справочных таблиц (См ниже).

Обращаем ваше внимание на то, что скорость подачи (S) и скорость резания (V) это не одно и то же.

При расчетах, для фрез малого диаметра значение частоты вращения шпинделя может получиться больше, чем количество оборотов, которое в состоянии обеспечить шпиндель. В данном случае за основу дальнейших расчетов величины (n) берется фактическая максимальная частота вращения шпинделя.

Скорость подачи (S) – скорость перемещения режущего инструмента (оси X/Y), вычисляется по формуле:

fz — подача на один зуб фрезы (мм)
z — количество зубьев фрезы
n — частота вращения шпинделя (об/мин)
Подача на зуб берется из справочных таблиц по обработке тех или иных материалов.

Таблица для расчета режимов резания:

После теоретических расчетов по формулам требуется подкорректировать значение скорости подачи. Необходимо учитывать жесткость станка. Для станков с высокой жесткостью и качеством механики значения скорости подачи выбираются ближе к максимальным расчетным. Для станков с низкой жесткостью следует выбрать меньшие значения скорости подачи.

Глубина фрезерования за один проход (ось Z) зависит от жесткости фрезы, длины режущей кромки и жесткости станка. Подбирается опытным путем, в ходе наблюдения за работой станка, постепенным увеличением глубины резания. Если при работе возникают посторонние вибрации, получаемый рез низкого качества – следует уменьшить глубину за проход и произвести коррекцию скорости подачи.

Скорость врезания по высоте (ось Z) следует выбирать примерно 1/3 – 1/5 от скорости подачи (S).

Краткие рекомендации по выбору фрез:

При выборе фрез нужно учитывать следующие их характеристики:
-Диаметр и рабочая длина. Геометрия фрезы.
-Угол заточки
-Количество режущих кромок
-Материал и качество изготовления фрезы.
Лучше всего отдавать предпочтение фрезам имеющих максимальный диаметр и минимальную длину для выполнении конкретного вида работ.

Короткая фреза большого диаметра обладает повышенной жесткостью, создает значительно меньше вибраций при интенсивной работе, позволяет добиться лучшего качества съема материала. Выбирая фрезу большого диаметра следует учитывать механические характеристики станка и мощность шпинделя, чтобы иметь возможность получить максимальную производительность при обработке.

Для обработки мягких материалов лучше использовать фрезы с острым углом заточки режущей кромки, для твердых – более тупой угол в диапазоне до 70-90 градусов.

Пластики и мягкие материалы лучше всего обрабатывать однозаходными фрезами. Древесину и фанеру – двухзаходными. Черные металлы – 3х/4х заходными.
Материал и качество фрезы определяют срок службы, качество реза и режимы. С фрезами низкого качества сложно добиться расчетных значений скорости подачи на практике.

Примерные режимы резания используемые на практике.

Данная таблица имеет ознакомительный характер. Более точные режимы обработки определяются исходя из качества фрез, вида станка, и др. Подбираются опытным путем.

Полезные ссылки:

Новинки:

Планшетные плоттеры (флюгерный, биговочный, осциллирующий, тангенциальный нож)

Normal 0 false false false RU X-NONE X-NONE

Для расчета режимов резания с применением вычислительной техники могут быть использованы различные методики и алгоритмы, реализованные в виде программных комплексов. Перечислим лишь некоторые из наиболее распространенных прикладных программ в которых возможно определение тех или иных параметров режимов резания:

«Программа для расчета режимов резания» от Sandvik Coromant, имеются интерактивная Интернет-версия (www.corogu >

Автоматизированная система технологической подготовки производства EdgeCAM обладает большой библиотекой режущего инструмента и позволяет осуществлять оптимальный расчёт режимов резания. Можно создать свою библиотеку инструментов исходя из применяемого на предприятии режущего инструмента. В программе реализованы возможности выбора режущего инструмента: токарный инструмент (обдирочные, проходные, канавочные, отрезные, расточные и др. резцы); фрезерный инструмент (цилиндрические, сферические, шпоночные и угловые фрезы); инструмент для обработки отверстий (сверла, протяжки, зенковки и др.);

Программный комплекс SecoCut, включающий в себя рекомендации по режимам резания (подача, скорость, мощность, момент и т.д.) для фрезерования, токарной обработки и сверления, графический инструмент, базу данных материалов;

Система автоматизированного проектирования Вертикаль включает в себя конструкторскую и технологическую информацию, использование библиотеки часто повторяемых технологических решений, автоматизированное проектирование техпроцессов с использованием Библиотеки конструкторско-технологических элементов (КТЭ), поиск необходимой информации, автоматический подбор данных при проектировании ТП, навигацию по тексту технологии с использованием 3D-модели или чертежа, связь конструкторских и технологических данных, автоматизированный расчет временных и материальных затрат;

Система CATIA (Computer Aided Three-dimensional Interactive Application) – одна из распространенных САПР высокого уровня. Это комплексная система автоматизированного проектирования (CAD), технологической подготовки производства (CAM) и инженерного анализа (САЕ), включающая в себя инструментарий трёхмерного моделирования, подсистемы программной имитации сложных технологических процессов, средства анализа и единую базу данных текстовой и графической информации. Позволяет решать все задачи технической подготовки производства – от внешнего (концептуального) проектирования до выпуска чертежей, спецификаций, монтажных схем и управляющих программ для станков с ЧПУ.

Рамки данного пособия не позволяют обсуждать применение программных комплексов для расчетов режимов резания, поэтому подробно рассмотрим лишь первый программный продукт, оставляя остальные для дальнейшего отдельного рассмотрения.

Читать еще:  Размеры морковки для дровокола

Интерактивная «программа для расчета режимов резания» фирмы Sandvik Coromant выполнена в виде java- скриптов и расположена по адресу www.coroguide.com, раздел «Расчет режимов резания» (рис. 8.1).

Рис. 8.1. Выбор операции

Прежде всего, используя соответствующую вкладку, выберите язык интерфейса. Затем выберите операцию для расчета.

Страница 45

При врезании или обработке углов круглыми пластинами возникает эффект известный как
охватывание режущей кромки. Большая часть режущей кромки контактирует с заготовкой,
что вызывает увеличение усилий резания и возрастает вероятность возникновения вибраций.
Поэтому для обработки радиусов сопряжения на дне канавки рекомендуется использовать
пластины с минимально возможным радиусом относительно величины радиуса сопряжения.
Обрабатывая радиус, снижайте подачу на 50% от величины осевой подачи, см. пример.
Если радиус при вершине пластины равен радиусу на обрабатываемой детали, то
рекомендуется применять прерывистое резание для снижения риска возникновения
вибраций.

Рекомендуемые сплавы и режимы резания

Сплав первого выбора — GC1125.
Начальное значение скорости резания 150 м/мин и подача 0.20 мм/об.

= подача по оси z – max толщина стружки 0.15–0.40 мм

= обработка радиуса – 50% max толщины стружки

Сандвик расчет режимов резания онлайн

Основными параметрами задающими режимы резания являются:

-Частота вращения вала шпинделя (n)
-Скорость подачи (S)
-Глубина фрезерования за один проход

Требуемая частота вращения зависит от:

-Типа и характеристик используемого шпинделя
-Режущего инструмента
-Обрабатываемого материала

Частота вращения шпинделя вычисляется по следующей формуле:

D – Диаметр режущей части рабочего инструмента, мм
π – число Пи, 3.14
V – скорость резания (м/мин) — путь пройденный точкой (краем) режущей кромки фрезы в минуту.

Скорость резания (V) берется из справочных таблиц (См ниже).

Обращаем ваше внимание на то, что скорость подачи (S) и скорость резания (V) это не одно и то же.

При расчетах, для фрез малого диаметра значение частоты вращения шпинделя может получиться больше, чем количество оборотов, которое в состоянии обеспечить шпиндель. В данном случае за основу дальнейших расчетов величины (n) берется фактическая максимальная частота вращения шпинделя.

Скорость подачи (S) – скорость перемещения режущего инструмента (оси X/Y), вычисляется по формуле:

fz — подача на один зуб фрезы (мм)
z — количество зубьев фрезы
n — частота вращения шпинделя (об/мин)
Подача на зуб берется из справочных таблиц по обработке тех или иных материалов.

Таблица для расчета режимов резания:

После теоретических расчетов по формулам требуется подкорректировать значение скорости подачи. Необходимо учитывать жесткость станка. Для станков с высокой жесткостью и качеством механики значения скорости подачи выбираются ближе к максимальным расчетным. Для станков с низкой жесткостью следует выбрать меньшие значения скорости подачи.

Глубина фрезерования за один проход (ось Z) зависит от жесткости фрезы, длины режущей кромки и жесткости станка. Подбирается опытным путем, в ходе наблюдения за работой станка, постепенным увеличением глубины резания. Если при работе возникают посторонние вибрации, получаемый рез низкого качества – следует уменьшить глубину за проход и произвести коррекцию скорости подачи.

Скорость врезания по высоте (ось Z) следует выбирать примерно 1/3 – 1/5 от скорости подачи (S).

Краткие рекомендации по выбору фрез:

При выборе фрез нужно учитывать следующие их характеристики:
-Диаметр и рабочая длина. Геометрия фрезы.
-Угол заточки
-Количество режущих кромок
-Материал и качество изготовления фрезы.
Лучше всего отдавать предпочтение фрезам имеющих максимальный диаметр и минимальную длину для выполнении конкретного вида работ.

Короткая фреза большого диаметра обладает повышенной жесткостью, создает значительно меньше вибраций при интенсивной работе, позволяет добиться лучшего качества съема материала. Выбирая фрезу большого диаметра следует учитывать механические характеристики станка и мощность шпинделя, чтобы иметь возможность получить максимальную производительность при обработке.

Для обработки мягких материалов лучше использовать фрезы с острым углом заточки режущей кромки, для твердых – более тупой угол в диапазоне до 70-90 градусов.

Пластики и мягкие материалы лучше всего обрабатывать однозаходными фрезами. Древесину и фанеру – двухзаходными. Черные металлы – 3х/4х заходными.
Материал и качество фрезы определяют срок службы, качество реза и режимы. С фрезами низкого качества сложно добиться расчетных значений скорости подачи на практике.

Примерные режимы резания используемые на практике.

Данная таблица имеет ознакомительный характер. Более точные режимы обработки определяются исходя из качества фрез, вида станка, и др. Подбираются опытным путем.

Полезные ссылки:

Новинки:

Планшетные плоттеры (флюгерный, биговочный, осциллирующий, тангенциальный нож)

Режимы резания при токарной обработке

При токарной обработке с заготовки за определенное число проходов снимается лишний металл, называемый припуском. В результате получается изделие заданной формы с требуемыми размерами и классом шероховатости поверхностей. В общем виде операция точения детали на токарном станке выглядит следующим образом: резец последовательно перемещается с заданной подачей вглубь металла вращающейся заготовки, при этом его режущая кромка за каждый оборот удаляет с заготовки заданную толщину металла.

Режимы резания при токарной обработке определяют на основании ряда технических показателей, среди которых самые значимые — это подача инструмента и частота вращения детали, закрепленной в шпинделе станка. Правильный выбор и применение режимов обработки гарантируют не только геометрическую точность и экономичность изготовления, но и сохранность детали, инструмента и оборудования, а также безопасность станочника.

Основные параметры

Одна из главных задач технологической подготовки производства при токарных работах — это определение рациональных режимов резания. При их расчете должны учитываться особенности обрабатываемого изделия и возможности станочного парка, а также наличие соответствующего инструмента, приспособлений и оснастки. Компоновка узлов и агрегатов токарного станка позволяет реализовать два определяющих вида движения, которые формируют заданную конфигурацию поверхностей детали: вращение заготовки (главное движение) и перемещение резца вглубь и вдоль поверхности детали (подача). Поэтому основными технологическими параметрами для токарного оборудования являются:

  • глубина резания;
  • подача и обороты шпинделя;
  • скорость резания.

Существует взаимовлияние режимов резания и основных элементов производственной экономики. Среди них самые значимые — это:

  • производительность оборудования;
  • качественные показатели производства;
  • стоимость выпускаемых изделий;
  • износ оборудования;
  • стойкость инструмента;
  • безопасность труда.

Понятие о режимах резания

Точение на предельных режимах повышает производительность токарного оборудования. Однако такая работа станков не всегда возможна и целесообразна, т.к. существуют ограничения в виде предельной мощности главного привода, жесткости и прочности обрабатываемых изделий, а также технологических параметров инструмента и оснастки.

Еще одним ограничением являются характеристики отдельных материалов. К примеру, титан и нержавеющая сталь для токарной обработки являются одними из наиболее сложных материалов и требуют особого подхода при определении параметров технологической операции.

При неправильном расчете или подборе технологических параметров работа на высоких скоростях может вызвать повышенную вибрацию и разбалансировку отдельных механизмов токарного станка. Это приводит к понижению точности и повторяемости размеров изделий. Кроме этого повышается риск поломки инструмента и выхода из строя станка.

Припуск — это толщина металла, удаляемого токарным резцом с заготовки до достижения ею чистового размера. При обточке и расточке он удаляется поэтапно за заданное число резов. Толщина металла, удаляемого за единичный проход резца, в механообработке носит название глубина резания и измеряется в миллиметрах. В технологических расчетах и таблицах этот параметр обозначают буквой t.

При операциях обточки она равна 1/2 разности диаметров перед и после обточки детали и вычисляется по формуле:

Читать еще:  Как выбирать телевизор в магазине

где t – глубина резания; D — диаметр заготовки; d – заданный диаметр детали.

При операциях подрезки — это размер слоя металла, удаляемого с торца заготовки за единичный проход резца, а при проточке и отрезке — глубина канавки.

В идеальном случае на удаление припуска требуется один проход резца. Но в реальности токарный процесс, как правило, включает в себя черновой и чистовой этап обработки (а для поверхностей с повышенной точностью – и получистовой). При хороших характеристиках и форме заготовки обе эти операции выполняются за два-три прохода.

Подача при токарной обработке — это длина пути при поперечном перемещении режущей кромки резца, совершаемом ей за единичный оборот шпинделя. Ее измеряют в мм/об, в технологической документации обозначают буквой S и подбирают по технологическим справочникам. Величина подачи зависит от мощности главного привода, значения t, габаритов и физических свойств обрабатываемой заготовки. При точении она рассчитывается по формуле:

Производительность токарного оборудования напрямую связана с величиной подачи.

При операции точения подача на токарном станке должна устанавливаться на максимально возможное число, но с учетом технологических параметров станка и применяемого инструмента. При операциях по черновому точению она зависит от мощности главного привода и устойчивости детали. А при чистовом точении основным критерием является заданный класс шероховатость поверхности.

Скорость резания при токарной обработке — это суммарная траектория режущей кромки резца за единицу времени. Ее размерность — в м/мин, а в таблицах и расчетах ее обозначают буквой v и подбирают по технологической документации или рассчитывают по формулам. В последнем случае расчет происходит в следующей последовательности:

  • вычисляется величина t;
  • по справочнику выбирается значение S;
  • определяется табличное значение vт;
  • рассчитывается уточненное значение vут (умножением на корректирующие коэффициенты);
  • с учетом скорости вращения шпинделя выбирается фактическое значение vф.

Этот параметр является одной из основных характеристик производительности металлорежущего оборудования и напрямую влияет на эксплуатационные режимы работы токарного станка, износ инструмента и качество обрабатываемой поверхности.

Выбор режима на практике

Расчет режимов резания при токарной обработке производится специалистами отдела главного технолога предприятия или технологического бюро цеха. Полученные результаты заносят в операционную карту, в которой приводится последовательность этапов, перечень инструмента и режимы изготовления требуемой детали на конкретном токарном станке. Заводские и цеховые технологи рассчитывают параметры технологического процесса и выбирают соответствующие инструмент и оснастку, используя конструкторские чертежи, эмпирические формулы и табличные показатели из технологических справочников. Но на практике реальные условия точения могут отличаться от нормативных по следующим причинам:

  • снижение точности оборудования в результате износа;
  • отклонения в геометрических размерах и физических характеристиках заготовки.
  • несоответствие характеристик материала расчетным.

Элементы резания при токарной обработке

Поэтому для уточнения расчетных технологических режимов применяют метод пробных проходов: точение небольших участков поверхности с подбором режимов и последующим замером геометрии и качества поверхности. Главные недостатки такой отладки технологического процесса — это возрастание трудозатрат и сверхнормативное использование производственных ресурсов. Поэтому его используют только в особых случаях:

  • единичное изготовление без операционной карты;
  • определение точности работы токарного оборудования перед запуском партии;
  • работа с неполноценными заготовками (брак и неточность размеров);
  • обточка литейных и кованых заготовок, не прошедших предварительную обдирку;
  • запуск в производство изделий из новых материалов.

При первом запуске в производство нового изделия, обрабатываемого на автоматизированном оборудовании, также производят пробное точение и подбирают вручную режимы резания. Токарный станок с ЧПУ выполняет все операции по программе, поэтому оператор не всегда может корректировать параметры его работы.

Кроме углеродистых сталей на токарном оборудовании обрабатывают такие металлы как легированная сталь, чугун, титан, сплавы алюминия, бронза и другие сплавы меди. Помимо этого, такую обработку используют для точения материалов с низкой температурой плавления и воспламенения, таких как пластики и дерево. При работе с пластмассами токарные станки чаще всего применяют при обработке деталей из фоторопласта, полистирола, полиуретана, оргстекла, текстолита, а также эпоксидных и карбомидовых композитов. Все перечисленные группы материалов имеют свои особенности расчета и практического применения режимов точения. Это хорошо видно на примере токарной обработки нержавейки — самого распространенного после углеродистой стали конструкционного материала.

Нержавеющая сталь характеризуется низкой теплопроводностью, вязкостью, коррозионной стойкостью, сохранением прочности и твердости при высоких температурах, а также неравномерным упрочнением. Кроме того, в состав некоторых сортов нержавеющей стали входят легирующие добавки повышенной твердости с абразивными характеристиками. Поэтому при работе с ней на практике применяют специальные режимы точения и методы охлаждения и смазки детали.

Обработка нержавейки ведется на повышенных оборотах при уменьшенной подаче. Высокая вязкость этого материала способствует созданию непрерывной вьющейся стружки.

Для решения этой проблемы применяют резцы со стружколомом. Для отвода тепла и смазки обрабатываемой поверхности в рабочую зону подается специальная СОЖ (смазочно-охлаждающей жидкости) на основе олеиновой кислоты. Это уменьшает нагрев заготовки и снижает износ резца. В последнее время все чаще применяют современные методы, которые также уменьшают износ инструмента: направление в рабочую зону ультразвуковых волн и подвод к металлу слаботочных импульсов.

Вычисление скорости резания

Время точения металла (tосн, основное время) — самая затратная составляющая в суммарном времени изготовления единичного изделия. Поэтому от скорости выполнения этой технологической операции напрямую зависит экономическая эффективность использования токарного оборудования. Правильный расчет скорости резания при токарной обработке важен не только с точки зрения стоимостных показателей производственной операции. Ошибки в расчете и применении этого параметра может привести не только к браку детали, но и к повреждению токарного оборудования, оснастки и инструмента. Далее приводится последовательность расчета этого показателя для самой распространенной операции — обточки цилиндрической поверхности.

Основные факторы, влияющие на скорость резания

Скорость резания v имеет размерность м/мин и в общем виде вычисляется по формуле:

где D — диаметр заготовки в мм; n — скорость шпинделя в об/мин.

Но на токарном оборудовании невозможно количественно задать v в качестве параметра управления. При работе на токарных станках предусмотрена регулировка только оборотов шпинделя и подачи инструмента, которые зависит не только от значения v, но и от ряда других факторов: материала детали, мощности главного привода, вида точения и характеристик режущего инструмента. Поэтому при расчете режимов в первую очередь определяют расчетные обороты шпинделя:

На основании полученного результата по таблицам справочной литературе выбирают соответствующее значение v, которое зависит глубины точения, подачи, материала, типа резца и вида операции.

Для расчета теоретической глубины резания t на основании чертежа определяют размерные характеристики детали и заготовки, а затем с учетом геометрических параметров инструмента вычисляют ее по формуле:

где D — диаметр заготовки; d – конечный диаметр детали.

После вычисления величины t по справочникам определяют табличное значение подачи S в мм/об. В справочных таблицах учтены: вид материала (различные стали, бронза, чугун, титан, алюминиевые сплавы), тип точения (черновое, чистовое), параметры резца и геометрия его подхода к обрабатываемой поверхности. Затем по технологическим таблицам на основании полученных величин t и S определяют vτ — табличное значение скорости резания.

Далее vτ должна быть скорректирована в соответствии с реальными условиями точения, к которым относят: период стойкости и технические параметры резца, прочностные характеристики материала, физическое состояние обрабатываемых поверхностей, геометрия резания.

Корректировка vт осуществляется с помощью группы поправочных коэффициентов:

где vут — уточненная скорость резания; K1 — коэффициент, зависящий от времени работы резца; K2, K4 — коэффициенты, зависящие от технических параметров резца; K3 — коэффициент, зависящий от состояния обрабатываемой поверхности; K4 — коэффициент, зависящий от материала резца; K5 — коэффициент, зависящий от геометрии обработки.

Читать еще:  Зарядка для фото на тс132 40

После расчета vут вычисляют уточненную скорость вращения шпинделя nут по следующей формуле:

Значение nут должно лежать в диапазоне паспортных скоростей главного привода станка, которые приведены в заводской документации токарного оборудования. Если полученная в результате расчетов nут не имеет точного соответствия в таблицах станка, то необходимо применить ближайшее самое меньшее число.

Формулы для токарной обработки

На последнем этапе рассчитывают фактическую скорость резания vф:

Vф напрямую связана с мощностью главного двигателя станка. Поэтому она является основным параметром при выборе конкретного типа токарного станка для обработки требуемой детали.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

РАСЧЕТ РЕЖИМОВ РЕЗАНИЯ

Программа предназначена для расчетов режимов резания при обработке на сверлильных, токарных и фрезерных станках при выполнении сверления, рассверливания, зенкерования, развертывания, точения, подрезки, растачивания, фасонного точения, алмазного растачивания, прорезки, отрезки, при обработке торцевыми, концевыми, шпоночными, дисковыми и прорезными фрезами.

1. ОБЛАСТЬ ПРИМЕНЕНИЯ

В программе использован расчетно-аналитический метод расчета и рекомендуется для использования в условиях мелко- и среднесерийных типов производств.

Следует отметить, что машиностроение – область широкая, с большим многообразием методов обработки, материалов, станков, приспособлений и режущих инструментов, требований по качеству обрабатываемых поверхностей, когда изменение одной из составляющих влечет за собой и изменение режимов резания. Написать единую программу расчета режимов резания, учитывающую все особенности машиностроения, не представляется возможным.

Предлагаемая Вашему вниманию программа также, как и программы, разработанные другими авторами, имеет свою область применения.

1.1. Данные о допустимом использовании программы расчета режимов резания (табл.1,2,3).

2.1. Модели станков, используемые базой данных программы

В базе данных находится 79 станков, из них 14 токарных, 35 для обработки отверстий и 30 фрезерных. Имеется возможность добавления станков. Режимы резания, разработанные программой, автоматически округляются до паспортных данных выбранного станка и не более. Если в базе данных необходимого токарного станка не оказалось, можно рассчитать, например, для универсального станка 1К62 и полученные результаты округлить до значений оборотов шпинделя и подач требуемого станка.

3.1. Материал детали

В базе данных заложены следующие материалы и их характеристики:

СЧ 18, Сталь ст.3, Сталь 5, Сталь 20, Сталь 25, Сталь 35, Сталь 40, Сталь 45, Сталь 65Г, Сталь А20, Сталь А30, Сталь 25Л, Сталь 35Л, Сталь 18ХГТ, Сталь 40Х, Сталь 09Г2, Сталь В20, Д20, Сталь Д35, Г35, Сталь В45.

4.1. Типы режущих инструментов

· Зенкер для сквозных цилиндрических отверстий цельный;

· Зенкер для сквозных цилиндрических отверстий сборный;

· Зенкер для глухих цилиндрических отверстий цельный (сборный);

· Развертка машинная для цилиндрических отверстий цельная;

· Развертка машинная для цилиндрических отверстий сборная;

· Резец проходной, подрезной;

· Фрезы торцевые насадные со вставными ножами, оснащенные пластинками твердого сплава (Ø 80…500 мм).

· Фрезы концевые с коническим хвостовиком, оснащенные пластинками твердого сплава (T15K6).

· Фрезы концевые с цилиндрическим хвостовиком из быстрорежущей стали.

· Фрезы шпоночные с цилиндрическим хвостовиком из быстрорежущей стали.

· Фрезы дисковые двусторонние со вставными ножами, оснащенные пластинками из твердого сплава.

· Фрезы прорезные (шлицевые) со средним (нормальным) зубом из быстрорежущей стали.

· Фрезы дисковые трехсторонние со вставными ножами из быстрорежущей стали.

· Фрезы дисковые пазовые из быстрорежущей стали

5.1. Материал режущей части инструментов

Используются в программе инструменты с режущей частью, изготовленной из быстрорежущей стали и твердого сплава марок: T30K4, BK8, BK6, BK3, BK2, T5K12B, T14K8, MP8, P18, P6M5, P9, P6M3, MPTC, T15K6, T5K10.

2. ОПИСАНИЕ ПРОГРАММЫ РАСЧЕТА РЕЖИМОВ РЕЗАНИЯ

Программа с высоким уровнем автоматизации решения задачи. Работа пользователя сводится к вводу данных, связанных с обрабатываемой деталью и выполняемом технологическом переходе. Для этой цели предусмотрены удобные средства. В зависимости от квалификации пользователя для ввода данных об одном переходе требуется 10…60 секунд.

Программа может запускаться с любого логического диска (кроме оптического), с любого места. Для начала работы не требуется никаких настроек.

Может эксплуатироваться в операционных системах: Windows XP, Windows Vista, Windows 7, Windows 8, Windows 10.

2.1. Каталоги и файлы программы

В папке DB хранится файл базы данных с именем RRRFTS.MDB. Файлы, не имеющие расширений – служебные и редактировать их нельзя.

Файлы *.DLL – динамически подключаемые библиотеки, в которых и реализован расчет режимов резания.

Файл RRRFTS.EXE – загрузочный.

Файл protjavka.net – служебный.

2.2. Работа с программой

После загрузки программы появляется главное окно программы (рис.1):

Рис. 1. Главное окно программы

Управление данными в программе принято одинаковым. В зависимости на какое из окон (1,2,3,4) наведен указатель мыши, требуется нажать правую кнопку для вызова контекстного меню и выбрать соответствующий пункт. Например, для внесения данных о детали выбираем первый пункт «Добавить запись…» (рис.2).

Рис. 2. Вызов контекстного меню

Вносим данные в появившееся диалоговое окно (рис.3):

Рис. 3. Диалоговое окно для ввода данных о детали

В окне 1 появится запись с фамилией «Иванов» (рис. 4), данные сохраняются автоматически в базе данных.

Рис. 4. В окне 1 добавилась запись «Иванов»

Выделяем запись «Иванов» и переходим в окна 2,3,4 для ввода данных о технологических переходах. Следует иметь в виду, что таблицы являются связанными отношениями «один ко многим». Это означает, что данные о переходах, которые мы будем вводить далее, являются связанными с записью «Иванов».

Далее, наводим указатель мыши на соответствующее окно (1,2 или 3) в зависимости от вида обработки (сверление, точение или фрезерование), вызываем контекстное меню и вводим данные о технологических переходах в появившемся диалоговом окне. Например, для сверления окно для ввода данных выглядит следующим образом (рис. 5):

Рис. 5. Диалоговое окно ввода данных о технологическом переходе

После нажатия кнопки , данные автоматически сохраняются в базе данных и высвечиваются в главном окне (рис.1).

Аналогично вызываются диалоговые окна для точения и фрезерования. Поскольку данные сохраняются в базе данных, то количество вводимых записей не ограничено.

Далее, в главном меню программы выбираем пункт «Расчет», а результаты режимов резания можно посмотреть, используя пункт «Результаты» (рис.6).

Рис. 6. Окно просмотра результатов

Для вывода режимов резания на печать, выбираем пункт «Печать», будет сформирован отчет (рис. 7):

Рис. 7. Отчет о результатах расчетов режимов резания

Результаты можно распечатать или сохранить в *pdf файле.

В последней версии программы добавлен пункт «Настройка», который используется для добавления станков в базу данных. В настоящее время в базе данных 79 станков. Для добавления станков используют пункты меню, показанные на рисунке 8.

Рис. 8. Меню для добавления станков в базу данных

Например, для добавления токарного станка выбираем пункт «Добавить токарный станок…», и в появившемся диалоговом окне внести данные из паспорта станка.

Рис. 9. Диалоговое окно для добавления токарных станков в базу данных

Выводы: Предшествующие версии данной программы показали хорошие результаты, эксплуатировались в течении нескольких лет на различных предприятиях машиностроения. Программу можно рекомендовать для использования на предприятиях с мелко- и среднесерийным производствами, а также в учебных заведениях при выполнении курсовых и дипломных работ.

Ссылка на основную публикацию
Adblock
detector